Section 6.1: Composite functions

1) $f(x)=3 x-6 \quad g(x)=2 x+10$

1a) $(f \circ g)(x)$ $=3(2 x+10)-6$ $=6 x+30-6$	1b) the domain of $(f \circ g)(x)$ The domain of both f and g are all real numbers, so there is no work to find the domain of part a.
Answer: $(f \circ g)(x)=6 x+24$	Answer: domain $(-\infty, \infty)$

1c) $(g \circ f)(x)$ $=2(3 x-6)+10$ $=6 x-12+10$ 1d) the domain of $(g \circ f)(x)$ The domain of both f and g are all real numbers, so there is no work to find the domain of part c.	
Answer: $(g \circ f)(x)=6 x-2$	Answer: domain $(-\infty, \infty)$

3) $f(x)=x^{2}+5 \quad g(x)=3 x-4$

$$
\begin{aligned}
& \text { 3a) }(f \circ g)(x) \\
& =(3 x-4)^{2}+5 \\
& =(3 x-4)(3 x-4)+5 \\
& =9 x^{2}-12 x-12 x+16+5 \\
& =9 x^{2}-24 x+21 \\
& =3\left(3 x^{2}-8 x+7\right) \text { (this doesn't factor more) } \\
& \text { Answer: }(f \circ g)(x)=3\left(3 x^{2}-8 x+7\right)
\end{aligned}
$$

3b) the domain of $(f \circ g)(x)$
The domain of both f and g are all real numbers, so there is no work to find the domain of part a.

Answer: domain $(-\infty, \infty)$
3c) $(g \circ f)(x)$
$=3\left(x^{2}+5\right)-4$
$=3 x^{2}+15-4$
Answer: $(g \circ f)(x)=3 x^{2}+11$

3d) the domain of $(g \circ f)(x)$
The domain of both f and g are all real numbers, so there is no work to find the domain of part c .

Answer: domain $(-\infty, \infty)$
5) $f(x)=x-4$ $g(x)=x^{2}+2 x-1$

5a) $(f \circ g)(x)$
$=\left(x^{2}+2 x-1\right)-4$
$=x^{2}+2 x-1-4$
Answer: $(f \circ g)(x)=x^{2}+2 x-5$

5b) the domain of $(f \circ g)(x)$
The domain of both f and g are all real numbers, so there is no work to find the domain of part a.

Answer: domain $(-\infty, \infty)$

5c) $(g \circ f)(x)$
$=(x-4)^{2}+2(x-4)-1$
$=x^{2}-4 x-4 x+16+2 x-8-1$
$=x^{2}-6 x+7$ (this is prime and can't be factored)
Answer: $(g \circ f)(x)=x^{2}-6 x+7$

5d) the domain of $(g \circ f)(x)$
The domain of both f and g are all real numbers, so there is no work to find the domain of part c .

Answer: domain $(-\infty, \infty)$
7) $f(x)=\frac{2}{x+4} \quad \mathrm{~g}(\mathrm{x})=\frac{3}{x-7}$

$$
\begin{aligned}
& \text { 7a) }(f \circ g)(x) \\
& =\frac{2}{\frac{3}{x-7}+4} \\
& =\frac{2}{\frac{3}{x-7}+\frac{4(x-7)}{x-7}} \\
& =\frac{2}{\frac{3+4 x-28}{x-7}} \\
& =\frac{2(x-7)}{4 x-25} \\
& =\frac{2(x-7)}{4 x-25}
\end{aligned}
$$

Answer: $(f \circ g)(x)=\frac{2(x-7)}{4 x-25}$

7b) the domain of $(f \circ g)(x)=f(g(x))$
First note that the domain of $g(x)$ is all real numbers except 7 , so we exclude 7 from the domain of $(f \circ g)(x)$.

To find the number to exclude from the domain of $g(x)$ just set the denominator equal to zero and solve for x.
$x-7=0$
$X=7$

In addition the answer to part a has a domain of all real numbers except, so $25 / 4$ needs to be excluded from the domain as well.

To find the number to exclude from the domain of $(f \circ g)(x)$ just set the denominator of the answer equal to zero and solve for x.
$4 x-25=0$
$4 x=25$
$x=25 / 4$

Answer: domain of $(f \circ g)(x)$ is all real numbers except 7 and 25/4.

$\text { 7c) }(g \circ f)(x)$	$7 \mathrm{~d})$ the domain of $(g \circ f)(x)$ the domain of $(g \circ f)(x)$
$=\frac{3}{\frac{2}{x+4}-7}$	First note that the domain of $f(x)$ is all real numbers except -4 , so we exclude -4 from the domain of $(g \circ f)(x)$.
$=\frac{3}{2-7(x+4)}$	
$=\frac{3}{\underline{2-7 x-28}}$	To find the number to exclude from the domain of $f(x)$ just set the denominator equal to zero and solve for x.
x+4	
$=\frac{3(x+4)}{-7 x-26}$	$x+4=0$
$=\frac{7 x-26}{}$	$x=-4$
Answer: $(g \circ f)(x)=\frac{3(x+4)}{-7 x-26}$	In addition the answer to part c has a domain of all real numbers except $26 / 7$, so $26 / 7$ needs to be excluded from the domain as well.
	To find the number to exclude from the domain of $(g \circ f)(x)$ just set the denominator of the answer equal to zero and solve for x .
	$-7 x-26=0$
	$-26=7 x$
	$-26 / 7=x$
	Answer: domain of $(g \circ f)(x)$ is all real numbers except -4 and $-26 / 7$

9) $f(x)=\frac{1}{x-3} g(x)=\frac{1}{x}$

9a) $(f \circ g)(x)=f(g(x))$
$=\frac{1}{\frac{1}{x}-3}$
$=\frac{1}{\frac{1}{x}-\frac{x}{x} * 3}$
$=\frac{1}{\frac{1-3 x}{x}}$

Answer: $(f \circ g)(x)=\frac{x}{-3 x+1}$

9b) the domain of $(f \circ g)(x)$
First note that the domain of $g(x)$ is all real numbers except 0 , so we exclude 0 from the domain of $(f \circ g)(x)$.

To find the number to exclude from the domain of $g(x)$ just set the denominator equal to zero and solve for x.
$x=0$

In addition the answer to part a has a domain of all real numbers except $1 / 3$, so $1 / 3$ needs to be excluded from the domain as well.

To find the number to exclude from the domain of $(f \circ g)(x)$ just set the denominator of the answer equal to zero and solve for x.
$-3 x+1=0$
$1=3 x$
$1 / 3=x$

Answer: domain of $(f \circ g)(x)$ is all real numbers except 0 and $1 / 3$

9c) $(g \circ f)(x)$	
$=\frac{1}{\frac{1}{x-3}}$	9d) the domain of $(g \circ f)(x)$ Answer: $(g \circ f)(x)=x-3$ the domain of $(g \circ f)(x)$ First note that the domain of $f(x)$ is all real numbers except 3, so we exclude 3 from the domain of $(g \circ f)(x)$.
To find the number to exclude from the domain of f(x) just set the denominator equal to zero and solve for x. $x-3=0$ $x=3$	
In addition the answer to part c has a domain of all	
real numbers, so nothing more needs to be	
excluded from the domain..	

11) $\mathrm{f}(\mathrm{x})=7 \mathrm{x}+1 \quad \mathrm{~g}(\mathrm{x})=\frac{x-1}{7}$

11a) show $(f \circ g)(x)=\mathrm{x}$	11b) show $(g \circ f)(x)=\mathrm{x}$
$(f \circ g)(x)=7(g(x))$	$(g \circ f)(x)=\frac{f(x)-1}{7}$
$(f \circ g)(x)=7\left(\frac{x-1}{7}\right)+1$	
$=x-1+1$	
$=\mathrm{x}$	

13) $f(x)=\frac{x-5}{2} \quad g(x)=2 x+5$

13a) show $(f \circ g)(x)=\mathrm{x}$	13b) show $(g \circ f)(x)=\mathrm{x}$ $(f \circ g)(x)=\frac{g(x)-5}{2}$ $(f \circ g)(x)=\frac{2 x+5-5}{2}=\frac{2 x}{2}=\mathrm{x}$
$(g \circ f)(x)=2(f(x))+5$	
$(g \circ f)(x)=2\left(\frac{x-5}{2}\right)+5=\mathrm{x}-5+5=\mathrm{x}$	

